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*Abstract-A set of multiphase field equations-conservation of mass, momentum and energy-based on 
multiphase mechanics is developed. Multiphase mechanics applies to mixtures of phases which are separated 
by interfaces and are mutually exclusive. This is in contrast to the field equations of mixtures based on 
continuum mechanics which directly&plies to molecular mixtures where the phases coexist at the same 
points in space. Based on the multiljhase’inechanics formulation, additional terms appear in the field 
equations when the physical size of the dispersed phase (bubble or droplet) is many times larger than the 
inter-molecular spacing:lhese terms are thC inertial coupling due to virtual mass and the additional viscous 
coupling due to unsteadiness ofthe flow field. These physical effects as well as the continuum inertial coupling 
terms were neglected in many other two-phase calculations. By including this inertial coupling term, the one- 

%Wmensional multiphaseequations are found to give real characteristics. Furthermore, the sum ofmomentum 
equations of all phases reduces to the momentum equations of the mixture as should be expected. 

NOMENCLATirRE 

bubble or droplet rddius ; 
metric tensor of interface; 
displacement factor ; 
specific heat at constant pressure; 
specific heat at constant volume ; 
domain ; 
diffusivity ; 
characteristic size of an element of a 
phase ; 
total energy; 
field force ; 
inverse relaxation time constant for 

momentum transfer ; 
inverse relaxation time constant for 
energy transfer ; 
enthalpy ; 
total enthalpy or general relaxation 
time ; 
inertial coupling in the momentum equation 
of momentum flux ; 
force due to apparent tiass ; 
unit tensor ; 
gerieral flux ; 
heat flux ; 
heat source ; 
eff&tiveness of pa&H&kid momentum 
Wtilsfer ; 
inertial coupling of energy in energy 
equation of energy flux ; 
inertial coupling of energy in energy 
equation of energy per unit volume 
or characteristic length of a control 
volume; 

L’, 

m, 
m, 

n, 
N, 
4 

;: 

r, x, 
R, 
s, 
s*, 

S, 
4 
t 
;I 
T*, 

ii, 
V, 
I/‘, 
x, 
X09 

work dotie due t&apparent mass and 
&steadiness of flow field ; 
mass per particle of dispersed phase ; 
mass transport per unit area per unit 
time; 
unit outward normal vector ; 
number ; 
number density; 

<II, 
pressure ; 
h%&nsfer &%i$ing ; 

‘!$&%oiitiate ; 
i&i63 6f a’ pipe or gas constant ; 
surface area ; 
tihiiracterist@cY$&Sng of elements of a 
phase ; 
&face of iii&Tace ; 
time ; 
hybrid tensor ; 
temperature; 
kharacteristic time for averaging in a 
control volume; 
internal energy; 
velocity; 
viscous coupling or volume; 
force due to unsteadiness of flow deld ; 
sbace coordinate ; 
characteristic length of a flow pa&age. 

Greek symbols 

a, volume fraction ; 
l-3 mass generation rate per unit volume; 
4 shear tensor; 
V, kinematic viscosity ; 
Pz density ; 
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Q, surface tension ; 
T, viscous stress or time ; 

if 
irreversible multiphase interaction ; 

Yl 
general source term ; 
reversible multiphase interaction ; 

*9 general conservation quantity. 

Superscript 

I:\, 
domain (r) ; 
material property. 

Subscript 

c, continuous phase ; 
4 domain ; 

z, 
evaporation ; 
total energy; 

k, 1, dispersed phase ; 
k enthalpy ; 
H, total enthalpy ; 
. . 
b_L components ; 
ji, tensorial components ; 
4 mixture ; 
mc, of continuous phase c in the mixture 

(such as stress of continuous phase 
in the mixture) ; 

mk of phase k in the mixture; 

s, interface or interdomain ; 
4 internal energy. 

Operator 

V, gradient ; 
V.9 divergence ; 

d/dt, = aja+u,.L; 

:, scalar product of tensors ; 
( Lfl9 surface covariant derivative. 

1. INTRODUCTION 

REACTOR accident analysis, which stimulates interest 
in the rigorous multiphase formulation of the field 
equations, may be classified into the following two 
categories: (1) transient overpower, and (2) loss-of- 
coolant. Phase change, such as coolant boiling, fuel 
melting, vaporization of structure material-etc., nor- 
mally takes place during the occurrence of each of 
these accidents. In order to predict a reactor accident 
sequence, as well as its consequence, the study of 
multiphase flow systems must be carried out in great 
detail. 

There are two basic models of multiphase flow in the 
study of mass, energy and momentum transfers in a 
system. One is the particulate model by analogy to 
kinetic theory, and the other is the mixture model of 
continuum mechanics. In the kinetic model, the parti- 
culate phase is treated as discrete particles which are 
transported by the continuum phase where inde- 
pendent variables include both position coordinates 
and momentum coordinates. The resultant formu- 
lation is thus given in the coordinates of the phase 
space. In theory at least, proper statistical averaging 
will yield dynamic equations of average properties in 

the space coordinates with the independent momen- 
tum coordinates replaced by transport parameters. 
However, this has not been successful in the case of 
particulate (or bubble) suspensions. The approach, 
presented in this paper, is therefore to formulate the 
multiphase system outright by deriving from the 
continuum mechanics, with proper modifications to 
account for the multiphase behavior: mutual exclusion 
of phases, disparate mass motions and temperatures, 
and non-uniform inertia effects [ 11. 

The continuum approach in a single-phase thermal- 
hydraulic problem is widely accepted and its validity is 
well proven. In some studies of two-phase flows, the 
conventional approach of continuum mechanics has 
also been applied [2]. In theory, a two-phase flow field 
can be subdivided into single-phase regions with 
moving boundaries between phases, and the two- 
phase flow problem can be formulated in terms of the 
local instantaneous variables. However, such a for- 
mulation would result in a multiboundary problem 
with the positions of the interfaces between two phases 
being unknown. Formulation based on a control 
volume smaller than an element of the phases, such as a 
bubble, remains to be completed [2]. 

The multiphase mechanics [3-51 is based on a 
control volume larger than an element of a phase, such 
as a bubble or a droplet, but much smaller than the 
characteristic volume of a flow system. It modifies the 
continuum mechanics to account for the discreteness 
of elements of phases: 

(1) The partial pressure in a continuum molecular 
mixture is not meaningful when applied to bubbles in a 
liquid or droplets in a vapor. 

(2) The mutual exclusion of phases gives rise to the 
effects of virtual mass and Basset force [6]. At the same 
time, multiphase mechanics introduces proper aver- 
agingoverthephases togiveadistributedrepresentation 
of field variables such as density, velocity, and tem- 
perature. This duality yields a complete set of field 
equations for computing multiphase systems. In this 
set of basic equations, the significance of conservation 
based on the mixture and the gradient of concentration 
(P da) will be clarified in the section on Discussions of 
this paper. 

When a bubble or droplet in a dispersion grows to a 
size approaching that of the characteristic dimension 
of the flow system, a provision is made for its transition 
to a new domain which interacts with other parts 
(domains) of the fluid via interfacial relations. This 
multidomain approach enables us to model the vari- 
ous flow regimes in a multiphase flow system: The 
phenomena of the flow of a boiling liquid in identifi- 
able regimes [7] can be treated under this general 
scheme. 

Within a domain, there is a continuous phase in 
which dispersed phases are suspended. The dispersed 
phases may consist of bubbles when the continuous 
phase is a liquid (or droplets in vapor). By invoking the 
multiphase principle [3], bubbles (droplets) of each 
size and density range constitute a phase. That is, the 
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identifiable sizes of bubbles (droplets of liquid) are 
subdivided into k different ranges, and each range has 
the same density. Thus, k different ranges constitute 
correspondingly k dispersed phases. 

Domains are separated by interfaces. Two adjacent 
domains are coupled to each other by mass, momen- 
tum, and energy transfer through the interface. 

For the cases illustrated by boiling flow in a pipe [ 71, 
in the range of nucleate boiling, the system might start 
with one domain with bubbles of various size ranges 
identified as phases. Coalescence of bubbles lead to 
large bubbles or slugs, which are large in comparison 
to the characteristic dimension of the flow system. 
Each slug may then be identified as a new domain. The 
shape of each slug is describable in terms of the 
geometry of the interface. Inside these slugs, bubble 
burst may occur, producing droplets within each slug. 
These droplets may now be identified as a phase or 
phases when there is sufficient size range. Coalescence 
of slugs of vapor bubbles leads to flow of a liquid layer 
along the wall in the form of an annulus with a core of 
vapor. The interface divides a domain of boiling liquid 
with bubbles and a domain of vapor with suspended 
droplets. The number of domains becomes one when 
the fluid becomes a mist of droplets in vapor only, but 
droplets of different sizes can be identified as phases. 
Extension of these considerations to film boiling 
because of high heat flux can be made in an analogous 
manner. 

The basic concept of multidomain multiphase fluid 
mechanics is that multiphase mechanics governs be- 
havior of large numbers of small growing bubbles, 
whereas when a few large bubbles emerge, multi- 
domain dynamic relations will be used. Given all the 
necessary transport parameters, interface properties, 
initial and boundary conditions, this general case will 
account for all of the ranges and regimes of flow of a 
boiling liquid, including various basic interactions. 

Several different models [2, S-101 have been pro- 
posed for two-phase flow in discussions at several 
conferences The objectives of this paper are: (1) to 
delineate a set of rigorous field equations of multiphase 
flow, and (2) to identify the source ofdifferences among 
various proposed models. 

2. GENERAL FORMULATION 

The averaging procedure must be directly related to 
the experimental observation, thus, cross checks be- 
tween the theoretical formulation and experimental 
data assure consistent procedures and meaningful 
predictions. Multiphase mechanics employs the 
space-time average over a control volume in a domain 
[S]. The relative magnitudes of three quantities which 
affect the method and means of averaging are the 
characteristic length of the elements of the dispersed 
phase D*, the spacing between the elements S*, and the 
volume V observed having characteristic length L*. 
Specification of multiphase control volume calls for L* 
> S*, L* > D*, using a one-dimensional example. It is 
to be noted that variations in the number of bubbles N 
in a control volume Y over a time interval At N S*/U, 

CJ being the characteristic velocity, are considered as 
high frequency perturbations. However, the inertia of 
the system is such that dynamic response time is of the 
order of a characteristic time 7’* which is, in general, 
many times the interval At - (N/V)-113/U. The vol- 
ume fraction c(~ of phase k at a position in space where 
the mixture passes is given by: 

al, = (O,,At, + O,,Atz + ----) 
is 

T* 

0 

U,dt=$ (1) 

where U,, is the mean velocity of phase k over 
duration At, within which it passes the observation 
station in space, O,, . . . etc., Ati, At,. . . are subtime 
intervals within T* interval, and 7”* is an equivalent 
time interval within T* for the passage of phase k in 
which the correction on non-uniform velocity is in- 
cluded. As long as L* > S*, the instantaneous volume 
average of number density is N,/V over the range L*. 
cc, is the time average of (N,#)u~, ul, being the bubble 
volume, over T* > At,. This space-time average over 
the same control volume is applicable for L*/U > T* 
> S*/U. Note that this is not the case of averaging 
based on the jump condition [2], where a, is as in 
equation (l), but given for L* < S*, L* < D*, and At 
> L*/U. For this one-dimensional example, the cor- 
responding volume average has to be taken over a 
length X N UT* > L*, not the space average within 
L*, which now corresponds to a slit. 

Thus, for a basic conservation quantity p&,, where 
P,,, is the density of the mixture, the time average is 
given by, for T* > At, 

where subscript k denotes a phase k of the mixture and 
& denotes the density of material constituting the 
phase. 

When considering the general conservation of any 
quantity I(l,,, of a mixture of phases, the general integral 
balance can be expressed in terms of instantaneous 
volume averages. For control volume V(r, t) of surface 
area A (r, t), 

$ s Pm$mdV= - 
V 

~A~~J.dA+~vw#d' (3) 

where pm is the density, J, is a general surface flux and 
4, is a general body source, I) is a unit vector normal to 
surface dA and “a bold character” denotes a vector. 

In equation (3), the basic conservation quantities: 
p,+,, J,,,, and p,&,, are time averages over time T* 
such that, for the mixture m of components k, besides 
equation (2), 

J_=& 
I 

J;dt 
T* 

s h#4, dt. 
T* 

(4) 
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These time averages of basic quantities are in agree- below. The crux of the coordinate transformation is 
ment with Delhaye and Achard [Z] with generaliz- represented by the last term of equation (14). This 
ation of volume fraction based on time adjusted for coordinate transformation enables expressing the 
non-uniform velocity in the present study. general balance equation for $,,, in terms of a phase 

The Leibniz rule gives k as: 

%jrp.&,dF = ~“~~.S.dv+~~~~~,u:ndA 

(6) 

and the Gauss theorem gives 

In.J,,,dA = [rV.J,,,dl’ 

s 

(7) 
p,,,~,tJ;ndA = V. (p,U,$,) dv. 

A s V 1 

Substitution of these relations into equation (3) for an 
arbitrary control volume gives a general differential 
balance equation as: 

= -v”hnk+~kh,,k+~kl//,. (16) 

The third term on the LHS accounts for the coordinate 
transformation from the motion of c.g. of the mixture 
to that of phase k. The general body source term &,k in 
the mixture while satisfying equation (15), also in- 
cludes mutual actions and reactions among the phases 
inside the mixture, or 

&& = 4k + 7 Hkl(til -tik) +  %/Pk) +  (@‘;/Pk) (17) 

&$.+V.(U,p,llr,) = -V~J,+P,~,. (8) 

This relation has been derived for a single phase fluid 

[2,lQ 
The basis of conservation of mass, momentum, and 

energy is applied to a given control volume encom- 
passing the mixture, thus taking into account all 
internal actions and reactions. Components of phases 
k relate to the mixture according to : 

where H,,, is the inverse relaxation time of general 
transfer of i/j from phases I to k, ‘3‘; and wk are the other 
reversible and irreversible (dissipative) multiphase 
interactions due to mutual exclusions of phases, and 
the second term on the RHS of equation (17) is due to 
J, acting on the phase boundary to be given in the 
next section. Further 

Pm=CPk 
k 

(9) 

and 

~t’t~HkI(d’~-~k)=o 

c’y;=o. 
k 

(18) 

(19) 

hnUm = c PkUk 
k 

(10) 

(11) 

J,=cJ, 
k 

(12) 

where Jti is the general flux of k in the mixture M [3,5], 
and for generation rate Ik, over the mixture: 

.$ rk = 0. (13) 

The relations given by equations (9) and (10) further 
defines the barycentric [l l] frame of reference, that is, 
motion of the center of mass (cg.) of the mixture in 
relation to those about the c.g.‘s of the phases or 
components. In simple terms, for phases in disparate 
motion, the position coordinate and its conjugate 
velocity components are defined by the mixture. 
Therefore, when treating the motion of each phase k, a 
coordinate transformation which relates the c.g. of the 
mixture and the c.g.‘s of phases can be expressed as: 

In the multiphase representation the detailed den- 
sity, velocity, temperature fields in the immediate 
vicinity of the boundary layer around each particle 
[12] of a dispersed phase are of no concern. In this 
sense, each particle becomes a part of a distributed 
density of its own species which constitutes a parti- 
cular phase. This cloud of particles is characterized by 
transport properties such as inverse relaxation times 
for mass, momentum and energy transfer and 
geometrical properties such as volume fractions of 
phases. Therefore, as long as a phase is defined as 
dispersed, the size of particles and the grid sizes for 
numerical computation are unrelated. 

Transition occurs from a phase to a new domain 
when a bubble or slug is large in comparison to a 
characteristic physical dimension of the flow system. 
The boundary of the new domain becomes accurately 
defined with certainty according to classical me- 
chanics. Consequently, for numerical computations, 
the computational grid will have to be smaller than the 
characteristic dimension of a domain. 

~,~,~,=~~kUk~k-~~k(Uk-U~n)(~k-~m) (14) 
k k 

hd#%,, = T Pkhk + c l-kJ/in. (15) 
k 

The last term on the RHS of equation (15) is equal to 
zero ; the significance of its inclusion will be explained 

3. RELATION OF MIXTURE TO PHASES 

For the general description of a multiphase system, 
superscripts (r), (s), etc. denote the domains. Within 
each domain subscripts k, c and m denote dispersed 
phases (for example, bubbles of various size ranges), 
the continuous phase, and the mixture constituting a 
domain respectively. Different roles of the dispersed 
phase and the continuous phase in the conservative 
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sients were relatively modest, indicating that some 
relations are as noted earlier [3]. The phase in- 
teractions within each domain and the interfacial 
relations between domains must be accounted for. 
Thus, for bubbles of species kin domain (r), the density 
ofthis bubble cloud is denoted as pr) while its material 
density is denoted as pp, volume fraction c(f), and its 
velocity UE). For domain (r), the mixture properties 
are governed by [ 31: 

pf = py + ; p;’ 

and the momentum by 

PL’U$’ = /$‘U!) + 1 P;‘U;‘_ 
k 

(20) 

(21) 

The total energy E is defined according to : 

Ecu+? (22) 

where II is the internal energy and U. U/2 is the kinetic 
energy. The potential energy is accounted for in terms 
of a field force f per unit mass. The energy of a domain 
(r) is thus: 

(23) 

Conformity with the kinetic theory of gases requires 
that the specific heats at constant volume c, be related 
according to [ 131: 

Pm C”, 
(r) (I) = p;‘cl:’ + c p’,“c$) 

k 
(24) 

which leads to the relationship for static temperatures 
based on individual centers of mass (c.g.): 

P~‘c;WT~’ = p~‘c~~T!” 

+cpl”c$$V’+; p;‘U’,“.(U~‘-U$‘) 
k [ 

+ c p;w’,“. (U’,“- UL’) . (25) 
k 1 

The last term in equation (25) accounts for the relative 
motion between the respective centers of mass. 

The definition in terms of total energy and internal 
energy does not prevent us from using the properties 
enthalpy and total enthalpy. Use of total enthalpy has 
the advantage of direct apclication of thermophysical 
property data and reduces the work term in the energy 
equation to aP/at. Specifically, the enthalpy is defined 
in terms of 

(26) 

in multiphase mechanics, which corresponds to: 

hk = uk + tpk/Pk) (27) 

in continuum mechanics. Modification of P(‘) by 
surface tension can be readily accounted for. Further, 
the total enthalpy is given by: 

Hf’ = hp’ + 
up. up, 

2 
(28) 

for both the multiphase and continuum mechanics 
formulations. Furthermore, 

a!‘+C$‘= 1. 
k 

(29) 

The transport properties of a phase in a mixture 
were defined strictly [3], and in general, are different 
from those of each phase in pure form. In order to 
account for a variety of flow regimes based on viscous 
or turbulent flow conditions of the continuous phase, 
the viscous stresses within each domain are repre- 
sented as that of the mixture tg) 

(30) 

where t,!$ is the viscous stress of phase k in the mixture 
in domain (r), and r:L is the viscous stress of phase c in 
the mixture in the domain (r). It should be noted that 
tz! is in general not equal to 7:) based on the transport 
of momentum of the‘continuous phase alone, and z’,‘) 
might not be meaningful when there are insufficient 
collisions of species k. In general 

T,$ may arise due to interaction of k with c alone when 
the k-k interaction is negligible compared to the k-c 
interaction. The latter gives rise to a “viscous” coef- 
ficient pf’L$. Momentum transfer is effected by 
bodily transfer of the particle cloud via diffusion 
through the continuous phase [14], with diffusivity 
DG 

@l - p;‘D;‘A’A” (32) 

where A, is the shear strain tensor of species k in (r). 

Hence, even when phase c is in turbulent motion, the 
motion of species k, while in random motion, may 
actually be in the viscous or slip flow regime [3,14]. 

Similarly, the conduction heat flux Jg) in the mixture 
is equal to: 

(33) 

where JLl is the conduction heat flux of species k in the 
mixture in the domain (r), and Jz! is the conduction 
heat flux of the continuous phase c in the mixture in 
domain (r). Again, when there are negligible collisions 
among the species k themselves, the thermal con- 
ductivity of species k in the mixture is given by 
c$‘lp’,“Df; where c$ is the specific heat at constant 
volume of phase k ; c$) is used instead of c$ (subscript p 
denotes constant pressure) because internal energy of 
the species k is transported by diffusion through the 
continuous phase c. The detailed derivation of the 
gradients of viscous stresses and heat fluxes of phases 
in the mixture were presented earlier [3-51. Note that 
the inertia1 coupling terms are now identified sep- 
arately [4,5, 151. 
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4. CONTINUITY EQUATION 

The continuity equations or the mass balance equations take the following form and the physical meaning of 
each of the terms in the balance equations is, with tit = 1, J,t = 0, drnr = 0 substituted into equations (11) and 
(16). For dispersed phase k : 

zip:’ 
at + v. (pp’uy’) = I-!_?. (34) 

That is. 

Rate of change I[ Net rate of mass Rate of 
of density of + 
dispersed phase 

flux of dispersed 
I[ 

= generation of 
phase (et&x-influx) dispersed phase I 

For continuous phase c: 

apg) _ + v . (p”‘u”‘) = p 

at cc c 
with similar interpretations of terms as in equation (34). In equations (34) and (39, It) and I(Er) are the rate of 
generation of phase k and c respectively in domain (r) per unit volume per unit time (t). The generation rates are 
given by breaking-up, agglomeration, evaporation and condensation [3]. For domain (r) 

Cr’,‘)+r’,‘) = 0. (36) 
k 

It is only feasible to identify finite steps of sizes if k denotes different sizes in the distribution, while the change of 
particle size tends to be continuous. The approach chosen here is to approximate gradual change in size of all 
particles by a stepwise change in size, but gradual change in population or number of particles in each size is 
explicitly accounted for. 

5. MOMENTUM EQUATION 

The momentum equations are given by taking tik = U,, J,, = ahPI - z,,,,., and 

hk = fk +Fkc(U, -“k) + 1 Fk,(Ul - uk) + (I;/pk) + &/Pk), 

and substituting into equation (16). 
For the dispersed phase k: 

(a/at)p;w;) + v . pp~q~ = - qvp _ (I_ q))p)~~;) +V . +i + p;)fp + 1;) + v;) + I;), + v;~‘s (37) 

The physical meaning of each term in equation (37) is: 

Rate of change of momentum + Net rate of momentum flux of 
1 c 

= - 
I [ 

Force acting on dispersed - 
of dispersed phase dispersed phase (efflux-influx) phase due to pressure gradient 1 

Resistance force due to change + 

I c 

Force due to shear stress acting I I + External field force acting on + 
of volume of dispersed phase on dispersed phase dispersed phase I 

Rate of change of momentum + Inertial coupling force acting 
due to generation of dispersed 
phase 

‘i 

on dispersed phase due to c.g. 
of dispersed phase in relation 
to c.g. mixture I 

Viscous coupling force acting + 
on dispersed phase due to drag 1 

Apparent mass effect on inertial + 

I[ 

Resistance force acting on 
force of dispersed phase dispersed phase due to 

unsteadiness of flow field 1 

where P is the pressure, f t) is the external force per unit mass of k in (r) and rmk (‘I is the shear stress of phase k in the 
mixture. The inertial coupling is given from equations (14) and (15) 

I;) = v . #$J[) -Q))(uc,l, _ u$)) + u,rt). (38) 

I, is the inertial coupling which relates the center-of-mass frames of the mixture and the phases [S, 151. I, can be 
dropped only for very small relative motion between the phases. The uniqueness of the split was shown by Chao, 
et al. [16]. 
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The viscous coupling is given by [3,5] : 

where Fti is the inverse relaxation time of momentum transfer from the continuous phase c to k in (r) and F$, for 
k # 1, is the inverse relaxation time of momentum transfer from other dispersed phases (other sizes and density) 1 
to k. V(i) accounts for the distribution ofvelocity in the immediate vicinity ofthe surface of a particleofa dispersed 
phase. The sum of all V’s within a domain is zero because they are internal actions and reactions. In this way the 
effect of the presence of a physical interface of discrete particles is properly accounted for. For the multiphase 
system, the inertial effect due to virtual mass is given by [6] : 

which is known only for a dilute suspension and the influence of other dispersed phase 1 is not readily inferred. 
The multiphase viscous coupling due to unsteadiness of the flow field is [3,5]: 

V(r), = 
k 

and 

d _a+qq7. 
dt’,“- at 

Two multiphase parameters stand out in equation (37): K, and Bk. The effectiveness of momentum transfer, 
Kk, from the particle to the fluid arises from the dissipation by the wake of a particle in the fluid [3]. Kk = 1 for 
accelerating flow with F (see Table 1) defined by the force acting on the particle, while the drag forces contributed 
by the fluid include that by the friction at the particle surface and in the wake. The irreversibility of the wake is 
such that in decelerating flow, the force acting on the fluid by the particle is only fraction K, of the resistance force 
while (1 -Kk) fraction of the force produces only random motion in the wake. This is diagrammatically 

Table 1. Force and work relations between the continuous phase and the dispersed phase- 
irreversibility of wake flow 

Accelerating particle Decelerating particle 

Forces 

Work 

-tJI, 

----UC 

- P decreme 

Force acting on particles (+) 
= Fm( UC - U,) 

Force acting on fluid and wake (+-) 
= Fm(U,- U,) 

(F defined by drag force acting 
on a stationary particle) 

Work done by fluid 
= U,Fm(U,- U,) 

Work done by particle 
= U,Fm(U,-U,) 

Work dissipated in fluid 
= Fm( U, - U,)* 

--uk 

- UC 

-P moy increase 

Force acting on particle (t) 
= Fm(U,-U,) 

Force acting on fluid (+) 
= KFm(U,- U,) 

Force to produce wake 
= (1 -K)Fm(U,- U,) 

Work done by fluid 
= U,KFm(U,-U,) 

Work done by particle 
= U,Fm(U,- U,) 

Work dissipated in fluid wake 
= U,(l -K)Fm(U,-U,) 

Work dissipated in fluid 
= Fm(U,- U,)* 
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Table 2. Effects of pressure in multiphase system 

C-- Pressure grodmt 

Force 0 
00 - 

OVP 

0 

- PVa+BPVa 
Diffusive or compressive force 
minus force at phase boundary 

-aVP 
Displacement 

Work PSa 
(in energy equation] 

Change of thermal state 
of particle 

ZSP 

Change of thermal state of 
fluid (displacement work) 

illustrated in Table 1. Also shown in Table 1 is the distribution of work dissipated by this relative motion. This 
consideration is also applicable to the dissipation ofunsteady motion. Only fraction K, of V’, as well as I and I’ is 
transmitted to the fluid, excluding the random motion set in the wakes of particles. The parameter BP) is called a 
displacement factor depending on the size of a dispersed phase (particle size), flow structure and fluid properties. 
As shown in Table 2, the term (1 -B’,“) P(‘)Vol~) accounts for the force due to volumetric displacement or diffusion 
of phase k, and 0 G Bi) < 1. For the limiting cases, B, (‘) 2 0 for gas mixture or highly dispersed multiphase fluid, 
and Bt) 6 1 for a structured multiphase fluid such as a fluid with relatively large size of bubbles or droplets. 

Note also the terms cr,VP + (1 - Bk) PVu, in equation (37). It is seen that although the sum is equal to Vu,P for 
BI = 0, the concept of a partial pressure has no meaning when applied to a multiphase system where the phases 
are mutually exclusive. Here a,VP is a force acting on a phase due to a pressure gradient and PVc(, is the force due 
to volnmetric displacement. The term PVa, has further significance in that in the energy equation (in terms of 
enthalpy), it leads to the term P&x,/& which is the work of compression of the dispersed phase (Table 2). For 
spherical particles of radius ck and number density nk, it is given by: 

pd 4”a3n 

( > at 3 kk 
=PZ (43) 

giving a~aP/a~ when d~placement work is included. 
For thecontinuous phase c, after subtracting the action-reaction terms from the momentum of themixture, the 

following equation is obtained 

+P”‘c K’,“(l -Bx’)Vc(‘,“+V.r’,“,+pj”fl” 
k 

+ c I(‘,“q’ + c qy _ z q”;Y _ c “‘k”VC$ (44) 
k k k k 

The physical meaning of each term in equation (44) can be correspondingly interpreted as for equation (37). 

6. ENERGY EQUATKONS 

In formulating the energy equations, direct application of equation (16) would suggest substitutions of: 

and 

$!$ = E,, J,, = u; (‘x&PI - rmk) + Jq,,,k. 

~mk=fk’~k+(~Ek/~)+~~k~(~I-~k~‘~k+~Gkl(u,-Uk)+~~;+li;~‘Uki~k 
I 

with subscripts k denoting both dispersed phase k and continuous phase c. However, this would Lead to an 
incorrect relation for the dispersed phase where only thermal terms and work done on the phase k contribute to 
the change of its temperature while its motion is produced by the drag force exerted by the continuous phase c 
[3]. That is, the kinetic energy of the dispersed phase is, in effect, part of the energy of the continuous fluid phase. 
Conversion of kinetic energy of the dispersed phase into its thermal energy takes place via conversions in the fluid 
phase and subs~uent heat transfer. 

Application of the first law of thermodynamics leads to the following energy equation for the dispersed phase 
expressed in terms of enthalpy. It is noted that kinetic energy of particles and work for moving these particles are 
part of the energy of fluid phase c [3]. 
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(a/at)(p’,“h’,“)+V.(p’,“U’,“h’,“) = -v.J~~~+~~~+a:)~+L~~+Q~). 

The physical meaning of each term in equation (45) is 

(45) 

[ 

Rate of change of 

FZLersedi ~~~~f~ 

=- 
enthalpy of 
dispersed phase 

+ E;a;oty +‘~~~rz~~e 1 + 

where J$Ali is the heat flux to species k in the mixture, J, is the heat source in k, and CC’,) aP/dt is the work 

(including symmetric displacement work) due to compression or expansion of the k species. L’k’), gives the effect of 

inertial coupling on energy of the phases, since transfer based on enthalpy difference is accounted for via Ql) 

I;ri = l-;‘h;’ (46) 

Qi) is the heat transfer coupling of species k to the continuous phase and the other dispersed phases: 

The inverse relaxation time of energy transfer (G) is seen to be consistent for both kinetic theory and multiphase 
calculations [13]. Details of the modification in equation (46) from [5] will be dealt with in a later paper. 

The energy equation of the continuous phase is therefore obtained from subtracting the sum of equation (45) 
for all dispersed phases from the overall energy equation. The latter is obtained from 

and 

$, = E,, J, = U;(PI-r,)+J,,, 

P&J, = cc Pkfk)Um + J,, + 1 PaP,,(U, - U&U, - V,) + 1 (I; +Vi)(U, - V,) 
k-c k 

in equation (16), together with conversion from E to H. The energy equation of the continuous phase c thus 
obtained takes the form: 

sincexPz+P%=O. 
k 

The physical meaning of each term in equation (48) is 

Rate of change of total + Net rate of total enthalpy flux = - Heat transfer due to + 
enthalpy of continuous phase of continuous phase conduction 
including KE of dispersed 

I [ 1 (efflux-influx) including KE of 1 
phase dispersed phase 

Heat source in continuous 

I 

+ 
phase 

Work due to displacement of + 
fluid excluding work due to 
compression or expansion by 
pressure of dispersed phase I 

(48) 
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II 
Energy dissipation due to shear Y + - Viscous dissipation due to 

‘1 

7 + Viscous dissipation due to - 
stress relative motion of continuous I 

phase to dispersed phase _j r 

$ 
relative motion among 

_ dispersed phases 1 

Work done by field force on 
] 

+ r Work done by field force on 7 + Total enthalpy and KE + 
continuous phase i dispersed phases 1 C adjustment for c.g. reference 1 
Work done due to apparent 
mass and flow field 

where 

Lg = v * r pp’(u(,) _ U~‘)(&Uf’ . uy - gJi’. UL’) + c pp&Jp - q’) 

)( (p’. UC” _ +q,. UC) 
k k I (49) 

k 

L’I” = c tpy g d [(uy _ up. (Ucf’ _ U(,l’)] + (U’,l’_ U’,“). V’k” 

k p:” dt’,’ 

(51) 

where G,, is the inverse relaxation time for energy transfer from continuous phase in dispersed phase. The G’s 
account for the distribution in temperature in the vicinity of the surface of a particle of a dispersed phase and 

(52) 

7. INTERFACIAL RELATIONS BETWEEN TWO ADJACENT DOMAINS 

A simplified treatment of interfacial relations is given here. The layer which divides the domains is assumed to 
be a geometric surface of negligible thickness for a stepwise change to occur across the interface. 

The challenging nature of the formulation of the interface is that the relations have to refer to the coordinate 
system constituting the interface S(r, t), r being the space coordinate, while S remains to be determined from the 
overall calculations. For the present formulation, the approach of Ishii [lo] and Aris [ 171 will be followed. 

Interfacial mass conservation 
The interfacial mass conservation equation is given in the form : 

i [p”‘n”‘.(U:“-U.)+~p:“n”‘.(U’;‘-u~)] = ,& [ti:)+;ti~)] =o 
(I, = 1 

(53) 

and has the meaning of zero net flux from both sides of the interface ; where II(‘) is the outward unit normal vector 
for domain (r) from the interface, and U, = dS/dt is the velocity of the interface. 

Inter$acial momentum conservation 
The interfacial momentum equation is given by a balance between the momentum fluxes from the bulk fluids 

and the interfacial tension. This expression is given in terms of the transfer between mixtures in the domain on the 
two sides of the interface [lo] : 

,$*{ py)n(‘). (UT) - U,)UC,) + C p’,‘)n(‘) . (U’,‘) - U,)Uc,l) - n(“. ( -PI + $)] + (t,a@u),@ = 0 (54) 
r 

and has the meaning : 

Rate of change of momentum 
fluxes of continuous phases 

Rate of change of momentum 

fluxes of all dispersed phases ] - [ ~~~~~]} ~~~~~:‘ek~~ ‘ides 

Forces due to 
+ 1 =o 

surface tensions 

where e = a(~,) is a surface tension, T, is the temperature at the interface, t, is the hybrid tensor between the space 
and the surface coordinates [17], a a0 is the metric tensor of the interface, and ( ),a is the surface covariant 
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derivative. The no slip condition is applicable to the continuous phases on both sides of the interface, but not to 
the dispersed phases as 

U = U(r) = UO’ s E E . (55) 

Note that UC;) is not limited by this condition, as a bubble may rise through a liquid interface and subsequently 
merge into the vapor phase. 

Znterfacial energy conservation 
Based on the assumption of a geometrical surface of zero thickness, the interfacial energy equation is: 

+ n(‘). [ ( - P(‘)I + 7:)) . U,] + n(‘) . JE) = 0 (56) 

+ 

with T, = T,“) = Tf) in the limit. 
Data on mass flux, momentum transfer, heat flux, bubble burst to droplets, droplet capture and coalescence are 

needed for the detailed specification of the interdomain boundary conditions. 

8. INITUL AND BOUNDARY CONDITIONS 

The field equations for multidomain-multiphase 
fluid mechanics have been developed in the previous 
sections. In order to solve these simultaneous equa- 
tions, both initial and boundary conditions need to be 
specified. Initial conditions are usually taken as the 
steady-state solution of the system equations or any 
known initial conditions. The typical boundary con- 
ditions encountered in the reactor problems of interest 
are listed below. 

Heated wall-Variable heat flux or prescribed tem- 
perature distribution ; nucleation sites, bubble size, 
detachment velocity and number density per surface 
area, normal and tangential velocity components, slip 
or non-slip. 

Non-heated wall-Temperature or temperature 
gradient ; normal and tangential velocity components, 
slip or non-slip. 

In-flow boundary-Inlet temperature; normal 
component of velocity (inlet velocity) and tangential 
velocity components or inlet pressure. 

Out-flow boundary-Temperature gradient ; nor- 
mal component of velocity gradient and tangential 
velocity components or outlet pressure. 

9. TRANSITION FROM A PHASE 
TO A DOMAIN 

When applied to the density of phase k, equation (1) 
becomes : 

(57) 

where Nf is the total number of particles of mass mk at 

the instant t and p; is the volume averaged density 
distributed in volume I/. 

While the mutually exclusive nature of the phases is 
accounted for by I’ and v’, the density pk within the 
framework of multiphase mixtures is actually a distri- 
buted quantity. The discreteness of particles in a 
dispersed phase is removed by the basic averaging 
procedure in equation (57). Transition from the phases 
in a multiphase mixture to a new domain occurs when 
the net density of the largest of the phases k gives, in a 
volume constituted by the smallest characteristic 
physical dimension of the flow system x,,, a single 
particle, say, (N:/V)xi S 1, or 

a: 5 (3/47r)c(,x& (58) 

In this way, ak becomes radius R of a new spherical 
domain as an approximation, with 

(47r/3)R3/ik = 
s 

RE pk4nr2 dr (59) 
0 k 

while the position and velocity of the center of the new 
domain are now at the c.g. of pk. Additional domains 
may be generated and agglomeration of domains gives 
rise to new domains. 

10. DISCUSSIONS 

Deterministic nature of the problem 
To summarize, the unknowns to be determined can 

be identified for d separate domains, each with k 
dispersed phases in Table 3. 

Table 3 gives for k > 1 and d > 1 a total of 6d(k + 2) 
- 5 dependent variables with 6d(k + 2) - 5 equations; 
the system is deterministic. Computations for given 
initial and boundary conditions can cover, at least in 
theory, all flow regimes and their transitions. 
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Table 3. Variables and equations 

Dependent 
variables 

PC. Pr 
UC, u, 
h,, h, (or T,, Tk) 

is 
Tzta;mass of 
each domain 
S(r, 0 
T, 

No. of unknowns* No. of equations* 

(k+l)d Continuity (k+ 1)d 
3(k+l)d Momentum 3(k+ 1)d 

(k+l)d Energy (k+l)d 
d Equation of state (k + 1)d 

(k+l)d Volume fractions d 

d-l 
3(d- 1) Interface 5(d-1) 

rl- 1 

*k>landdal. 

Inertial coupling term 
A general discussion of the basic concepts in the 

formulation of conservation equations for multiphase 
systems seems appropriate. Most of the formulation of 
the conservation equations for multiphase systems 
begins with a consideration of the individual phases 
[7-lo]. The conservation equations for the mixture 
are deduced by combining those for the individual 
phases. This might be considered a natural approach 
which appears feasible in principle. In practice, how- 
ever, it often leads to errors [18] due to the inability 
of these investigators to include all relevant physical 
effects into the formulation. An example is their 
conspicuous omission of the inertia1 coupling forces 
[15,19] in the momentum equation for the individual 
phases. This pitfall is recognized and the view [3] has 
been adopted that the formulation of the field equa- 
tions should be based on conservation principles as 
applied to the mixture. Moreover, there is resistance to 
motion of a body through a non-viscous fluid. Con- 
sequently, it is believed that the global momentum and 
energy equation for the mixture of the multiphase 
system assumes the same form as those for a homo- 
geneous medium, when viewed within the context of 
continuum mechanics. The foregoing statement has 
been adopted as a fundamental postulate. Most im- 
portantly, the formulation presented in this paper 
employs consistent coordinate transformation, inde- 
pendent of the procedures of averaging [2], size of 
control volume or jump condition [lo], or flow regime 
[9]. It was shown rigorously that without the inertial 
coupling effect properly accounted for, the one- 
dimensional momentum equations of components 
give imaginary characteristics [20,21]. Furthermore, 
the stability of computation of transient flow is 
significantly improved when the inertial coupling 
terms are properly accounted for [5]. The reason is 
that similar stability to that of the mixture momentum 
equation is retained via the inertial coupling terms. It is 
further noted that both the terms representing the 
effects of virtual mass and unsteady motion do not 
always stabilize the computation. 

The PVu, terms 
Besides identifying the possible range of B, in 

Section 5, distinction between homogeneous and 

structured multiphase fluid in terms of application of 
PVc(, terms needs clarification. 

An overview of the term VPu, = a,VP+PVa, in- 
cludes those who favor (1) dropping PVa, for reasons 
of making computation easier [22,23] or from con- 
sideration of an interfacial source force [lo], (2) 
retaining part of it as a stabilizing force [22], and (3) 
retaining PVa, for the reason of an extension of the 
continuum mechanism, as a compressive (or expan- 
sive) force and validity of the laws of thermodynamics. 
While details of these views have been given [20,24], it 
suffices to say that an all encompassing formulation for 
multiphase mechanics will be to replace, in the mo- 
mentum equation, the term VPQ by 

VPa, - B,PVcc, = a,VP + (1 - B,)PVa, (W 

with B, as a displacement factor; B, is a function of 
particle size, flow structure and fluid properties. The 
range of B, covers: B, = 0 for very small particles and 
B, -+ 1 for large particles because of low diffusivity. 
This factor includes all views and physical even- 
tualities and its use is believed to facilitate the progress 
of the computer modeling of multiphase thermo- 
hydraulics. 

It is interesting to note that the term PVa, has been 
attributed to as the source of imaginary characteristics 
in one-dimensional transient flow calculations, but 
realizing that dropping PVa, alone is not sufficient to 
give a system of real characteristics [22]. However, it is 
physically inconceivable that one-dimensional tran- 
sient motion of air has real characteristics, yet when 
written separately in terms of oxygen and nitrogen, the 
equations would give imaginary characteristics. Signi- 
ficance is seen in the inertial coupling terms in 
equation (16) in general, and equations (37), (44), (45), 
and (46) in specifics actually account for consistent 
coordinate transformation, leading to real characteris- 
tics for one-dimensional transient flow of a suspension 
[21]. It was also shown that PVa, term contributes to 
the wave velocity in this case. 

A thermodynamic and therefore a basic evidence for 
the existence of the PVa, term is seen in the physical 
case of adiabatic compression of a bubble, when the 
PVa, term is carried into the energy equation in the 
form of equation (45). When this is reduced to a single 
particle in a liquid at zero velocity of both phases and 
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with negligible heat transfer or heat source, equation 
(45) reduces to the equation of adiabatic compression. 

In exploring the continuation from continuum 
mechanics to multiphase mechanics, such as the case of 
continuum gas mixture of species 2 with a trace of 
species 1, the one-dimensional momentum equation of 
species 1 reduces to the diffusion equation when 
combined with the continuity equation. PVa, term 
gives the diffusion term via (P/@) as diffusivity [24]. A 
complete discussion is given by Sha and Soo [5]. 

The range of 0 ,< B, 5 1 will cover the whole range 
of reasoning and choices. Thus, the effects of B,PVa, 

term on system behavior under various conditions can 
be investigated. 

Worth noting is that I and I’ are not directly related 
and can be treated as cumulative because I’ is a field 
force due to the continuum phase. A valid question is 
that since I’ and V’ are known only for a dilute 
suspension [6], what should one do for a dense 
suspension? While it is obvious that I’ and V’ remain to 
be determined for a dense suspension, a conservative 
view is that a dense suspension is more readily treated 
as a continuum than a dilute suspension. I and V are 
expected to be much greater than I’ and V’ in a dense 
suspension while the reverse is likely for a dilute 
suspension. The error arising from ignoring I’ and V 

when calculating a dense suspension is expected to be 
small ; the same is true when neglecting a,VP and I, 
when calculating a dilute suspension. 

Comparison to other studies 

To further the current knowledge on multiphase 
mechanics, it is desirable to compare the present 
formulation to other existing pertinent studies. The 
work of Harlow and Amsden [9], Solbrig and Hughes 
[8], and Ishii [lo] were chosen for this comparison. 

The field equations presented in this paper will 
reduce to : (1) Harlow and Amsden’s formulation when 
both effectiveness of momentum transfer (K) and 
displacement parameter (B) are set equal to zero and 
unity respectively, inertia1 coupling term was dropped 
except that part due to mass generation and some 
simplifications of friction force between phases, (2) 
Solbrig and Hughes’ equations when the control 
volume includes solid structures by introducing po- 
rosity, values of K and B are set equal to zero and unity 
respectively and the inertial coupling term is deleted 
except that part due to mass generation, (3) Ishii’s set 
of governing equations, when the space-time average 
is replaced by the time average, the values of K and B 

are set equal to zero and unity respectively, and the 
inertial coupling term is substituted by interaction 
force. 

Comparisons with other existing formulations 
[23,26] and derivations are given in detail by Sha and 
so0 [5-j. 

Consistent approximation 

It is readily seen that, when applied to a one- 
dimensional transient flow, the problem is always well- 
posed (real characteristics) when I,, a,VP, and PVa, 
are all retained. The relations for the characteristics are 
reducible to those of the case of a single-phase fluid. 
The possibility ofill-posedness raised by some authors 
[20] appears to be due to the inconsistent approxi- 
mation via neglecting Ik but retaining a,VP. Neglect- 
ing the latter always renders the problem well-posed. 
Such an approximation is also supported by the 
compensation of a,VP with V, in an accelerated flow 
field in the case of a dilute suspension [27,28]. 
However, without the term (l-B,.)PVa, the wave 
velocity of the two phase system is not reducible to the 
case of a single phase fluid and is not physically 
meaningful. Hence, for a dilute suspension (small a) of 
small particles (U, N U,), both a,VP and I, can be 
dropped to maintain consistent approximations. 
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MECANIQUE DES FLUIDES MULTIPHASIQUES 

R&nm&-Un systbme d’tquations est diveloppt a partir de la mtcamque des fluides multiphasiques’ 
conservation de la masse, de la quantite de mouvement et de I’energie La mecanique multiphasrque 
s’applique aux melanges de phases qui sont &par&es par des interfaces et sont mutuellement exclusives. 
Ceci est en contraste avec les equations pour les melanges, bastes sur la mecanique des milieux contunus 
et qui s’appliquent directement aux melanges moliculaires pour lesquels les phases coexistent aux meme 
points dans l’espace. Dans la formulation de la mecanique multiphasique des termes supltmentanes 
apparaissent dans les equations quand la taille physique de la phase disperste (bulle ou goutte) est 
plusieurs fois plus grande que la distance= intermoleculaire. Ces termes representent le couplage mertrel du 
a la masse virtuelle et le couplage visqueux dQ a la fluctuation du champ d’ecoulement. Ces. effets 
physiques ainsi que les termes de couplage inertiel du continuum sont negliges dans beaucoup d’autres 
calculs en biphasique. En incluant ce couplage inertiel. les equations de l’icoulement unidirectionel et 
multiphasique donnent les caractbristiques reelles. La somme des equations de quantite de mouvement de 
toutes les phases se reduit aux equations de quantitb de mouvement du melange comme on peut l’esperer. 

MEHRBEREICHSFLUIDMECHANIK FUR MEHRPHASIGE SYSTEME 

Zusammenfassuog-Es wird em Satz von MehrphasenfeldglerchungenErhaltung der Masse des 
Impulses und der Energie-auf der Grundlage der Mehrphasenmechanik entwickelt. Mehrphasen- 
mechanik wird angewendet bei Gemischen von Phasen, welche durch die Grenzflachen getrennt smd und 
sich gegenseitig ausschlieBen. Hierin unterscheiden sie sich von den Feldgleichungen fur Gemische. die auf 
der Kontinuumsmechanik basieren und direkt fur Molekulargemische giiltrg smd. bei denen sich die 
Phasen gleichzeitig an den gleichen Punkten im Raum befinden. Durch den Ansatz der Mehrohasen- 
mechanik erschei&n zusltzhche Terme in den Feldgleichungen, wenn die kennzeichnende GriBe der 
dispersen Phase (Blase oder Tropfen) mehrmals griiBer ist als der mtermolekulare Abstand. Diese Terme 
sind die Inertialkopplung, entsprechend der virtuellen Masse und die zusltzliche Viskositatskopplung 
entsprechend der Verlnderlichkert des Stromungsfeldes. Diese physikalischen Effekte sowie dre 
Kontinuums-Inertialkopplungsterme blieben in vielen anderen Zweiphasenberechnungen unberuck- 
sichtigt. Beim Einbeziehen dieses Inertialkopplungsterms ergeben die eindimensionalen Mehrphasen- 
gleichungen zutreffende Aussagen. Dariiber hinaus fiihrt die Summe der Impulsgleichungen fur alle 

Phasen erwartungsgemal3 auf die Impulsgleichungen des Gemisches. 
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MHOl-O@A3HA5I 1-MflPOMEXAHMKA JJJlri HECMElIIMBAtOlI@lXCJl (PA3 

A~~omum- Ha OCHOBe MHOrO@a3HOi-i MeXaHHKH BbIBeAeHa CHCTeMa ypaBHeH&iii, IlpeACTaBJDl- 

K)ULHX noneBble 3aKoHbI coxpaHewta Maccbl, HMnynbca H 3Heprwi. MHoro@a-Jtiar Mexawwa npw 
MeHIleTCR K CMeCW B3aHMHO HepaCTBOpHMblX MS, pa3AeJleHH&dX nOBepXHOCT%Si, '(TO OTJlH'faeTCR 

OT nOAXOAa, OCHOBaHHOrO Ha ypaBHeHH%lX CnJ-lOlllHOti CpeAbI AJUI MHOrOKOMnOHeHTHblX MOJleKy- 

JUIpHblX paCTBOpOB. B TeX CJly'iaSIX, KOrAa $H3HYeCKHi? pa3Mep AHCnepCHOti &3bl(ny3blpbKa HJIH 

Kanm) BO hworo pa3 npesbuaer h4emMoneKynnptioe paccTomuie, 6 ypaBHeHHax MHoro@asHoA 

MeXaHWKW IlORBJlRtOTCR AOnOJlHHTeJlbHble WleHbl, OAHH H3 KOTOpblX HHepUHOHHblk H 06ycnoBneH 

~I$@~KTL~BH~F~ Maccoir, a ~T0p0ti npej3cTaenae-r co6oA an3xoe a3awoneAcTaHe, abl3aaHHoe tiecfa- 
UHOHapHOCTblO Te'leHWII. 3TWMH @43W'ieCKHMH 3++CKTaMli, a TaKlKe HHepUHOHHblMH WeHaMH 

cnnoUlHoii C,YZAbl El npymx pacv?Tax AByX+a3HblX cMeceir npeHe6peranH. HatineHo, 4TO y'leT 

HHe,,U,,OHHOrO WeHa B OAHOMepHbIX MHOrOC/la3HblX ypaBHeHWIX n03BOJlReT UOJly'lWTb PeaJlbHble 

XapaKTepHCTHKH CMeCefi. KpoMe TOrO,KaK Si CJleAOBanO OXHllaTb, HaiiAeHO,'lTOCyMMaypaBHeHHii 

HMUy,,bCOBAJU! BCeXi$a3CBOAHTCII KypaBHeHHtO HMnyJlbCaAIlSlCMeC&i. 


